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ABSTRACT

Social Network Marketing techniques employ pre-existing
social networks to increase brands or products awareness
through word-of-mouth promotion. Full understanding of
social network marketing and the potential candidates that
can thus be marketed to certainly offer lucrative opportu-
nities for prospective sellers. Due to the complexity of so-
cial networks, few models exist to interpret social network
marketing realistically. We propose to model social net-
work marketing using Heat Diffusion Processes. This paper
presents three diffusion models, along with three algorithms
for selecting the best individuals to receive marketing sam-
ples. These approaches have the following advantages to
best illustrate the properties of real-world social networks:
(1) We can plan a marketing strategy sequentially in time
since we include a time factor in the simulation of product
adoptions; (2) The algorithm of selecting marketing candi-
dates best represents and utilizes the clustering property of
real-world social networks; and (3) The model we construct
can diffuse both positive and negative comments on prod-
ucts or brands in order to simulate the complicated com-
munications within social networks. Our work represents a
novel approach to the analysis of social network marketing,
and is the first work to propose how to defend against nega-
tive comments within social networks. Complexity analysis
shows our model is also scalable to very large social net-
works.

Categories and Subject Descriptors: J.4 [Computer
Applications]: Social and behavioral sciences; H.m [Infor-
mation Systems]: Miscellaneous

General Terms: Algorithms, Theory, Measurement

Keywords: Social Network, Marketing, Heat Diffusion

1. INTRODUCTION

Although Social Network Analysis has drawn much at-
tention in the past decades, marketing on social networks
has just started, and shows great potential to be much more
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successful than traditional marketing techniques. According
to eMarketer', advertisement spending on worldwide social-
networking sites in 2007 is expected to reach $1.12 billion,
up from $445 million in 2006, and will achieve about $2.8
billion in 2010.

Unlike the traditional social network, online social net-
works have a number of important distinguishing features.
Massive quantities of data are available on online social net-
work sites, blogs, knowledge sharing sites, collaborative fil-
tering systems, newsgroups, email systems, etc. Millions of
users participate in these social networks, and act as differ-
ent roles. All of these social networks provide valuable infor-
mation for decision-making in marketing campaigns, espe-
cially in marketing of new products from start-up businesses.
Several successful examples, like Hotmail, Google, MySpace,
etc. have already shown the powerful abilities of social net-
work marketing. Full understanding of social network mar-
keting and the potential customers that can thus be reached
certainly offer lucrative opportunities for prospective sellers.

Research into how information flows in a social network
started from a book called “Diffusion of Innovations” by
Rogers [21]. Rogers formalized that adopters of any new
innovation could be categorized as innovators (2.5%), early
adopters (13.5%), early majority (34%), late majority (34%)
and laggards (16%). Some similar work in [7, 25] also focuses
on developing theories of innovation adoption.

Many researchers started to analyze the diffusion pro-
cess in terms of “word-of-mouth” marketing [4, 6, 10, 19],
since “word-of-mouth” advertising can be much more effec-
tive than traditional marketing methods. Although these
studies made great contributions to the analysis of innova-
tion diffusions, they were descriptive, rather than predictive
— they are built at a very coarse level, typically with only
a few global parameters, and are not useful for making ac-
tual predictions of the future behavior of the network [8].
In view of the subsequent exponential growth of online so-
cial network resources, researchers now have more data to
investigate and model the dynamics of viral marketing, the
innovation adoption problem and the information diffusion
process [9, 12, 13, 18, 20, 22, 23, 24].

In [9, 20], authors attempt to compute customers’ net-
work value as well as the intrinsic value of customers. They
focused on the following problem: given a potential social
network of consumers, if we can try to convince a subset
of individuals to adopt a new product or innovation, and
the goal is to trigger a large cascade of further adoptions,
which set of individuals should we target [13]7 Although
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simulations showed their work can help companies achieve
much more revenue than direct marketing, several remaining
problems still need to be studied, which we will introduce in
the next section. Song et al. [23] proposed leveraging users’
access patterns to model information flow and generate ef-
fective personalized recommendations. Their later work [22]
proposed an information flow model that leverages diffusion
rates for identifying where information should flow to and
identifying who will most quickly receive the information.

A social network is a very complex network with all kinds
of messages flowing within it. Modeling social network mar-
keting realistically is an extremely difficult problem. Aiming
at the limitations of previous work, we propose a social net-
work marketing framework which utilizes the heat diffusion
theory from Physics to describe the diffusion of innovations.
These heat diffusion models provide our work with the fol-
lowing contributions: (1) Due to the time-dependent prop-
erty of the heat diffusion process, our model can simulate
product adoptions step by step, which helps marketing com-
panies divide their marketing strategies into several phases.
(2) Marketing candidates selection algorithms based on the
diffusion models can best represent the clustering coefficient
property of real-world social networks. The approximation
algorithm is proved to be within a good bound of the op-
timum solution. (3) Every consumer or customer in social
networks can not only diffuse positive comments on prod-
ucts but also can influence others with negative comments
even if those others have already adopted those products
themselves. Our model captures this important feature of
social networks, which has not been studied extensively in
previous work, and provides suggestion on planing market-
ing strategies.

The rest of the paper is organized as follows. We review
related work in Section 2. Section 3 proposes several heat
diffusion models. In Section 4, we provide three marketing
candidates selection algorithms. Section 5 gives the com-
plexity analysis of our proposed models and algorithms. In
Section 6, we demonstrate the empirical analysis of our mod-
els and algorithms. Finally, conclusions and future work are
given in Section 7.

2. RELATED WORK

Rogers theorizes in [21] that innovations spread through
society in an S curve, as the early adopters select the tech-
nology first, followed by the majority, until a technology or
innovation is common. A tremendous expansion has oc-
curred in the marketing literature on diffusion since the
1970s. The most important single impetus to this schol-
arly explosion is a model for forecasting the diffusion of new
consumer products proposed by Frank Bass in [4]. The Bass
model characterizes the spread of a new product and tech-
nology in a market by

) m— N(t-1),

N NE=1) (tm_ !

N({t—1)+p(m—N({t—1)+q

where N(¢) is the cumulative number of adopters by time t;
the parameter m is the market potential, indicating the to-
tal number of people who will eventually adopt the item; the
coefficient p is called the coefficient of innovation, indicating
the external influence or advertising effect; and the coeffi-
cient ¢ is called the coefficient of imitation, indicating in-
ternal influence or word-of-mouth effect. However, the Bass
model is an overly simplified representation of a complex
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reality, and it ignores the network structure, which could
significantly influence the diffusion process [22].

Recently, in order to help companies determine which po-
tential customers to market to, Domingos and Richardson [9,
20] proposed a fundamental algorithm to model customers’
network value as well as the intrinsic value of the customer.
The customer’s network value is defined as the expected
profit from sales to other customers this customer may in-
fluence to buy, the customers those may influence, and so
on recursively.

Although simulations show their work can help companies
achieve much more revenue than direct marketing, several
remaining problems still need to be studied. First, Domingos
and Richardson considered making marketing decisions at a
specific point in time, whilst in practice, the adoptions of a
product by customers happen at different time with different
interventions. The time aspect needs to be considered when
modeling social network marketing since the social network
is evolving from time to time. Second, their work ignores
the negative influence of every customer. In practice, one
customer will have a negative influence on others (neighbors)
if this customer does not like this product. Third, in reality,
marketing to individuals with the highest network values is
not an appropriate choice since these peoples maybe come
from the same community of a social network. The best
strategy is to choose marketing candidates from different
communities.

In [23], Song et al. proposed to model users’ adoption
patterns as an information flow network for a recommenda-
tion system. An Early Adoption Based Information Flow
(EABIF) network model and a Topic-sensitive Early Adop-
tion Based Information Flow (TEABIF) network model were
proposed. In [22], Song et al. proposed another information
flow model that captures the diffusion rates of information
in a network. These two models are well defined, and espe-
cially useful for problems in recommendation and ranking.
However, these two models need additional data on users’
profiles, access patterns, login logs, or purchase logs, which
may not always be available.

3. HEAT DIFFUSION MODELS

Heat diffusion is a physical phenomenon. In a medium,
heat always flows from a position with high temperature to
a position with low temperature. Recently, heat diffusion-
based approaches have been successfully applied in various
domains such as classification and dimensionality reduction
problems [5, 16, 17]. [17] approximated the heat kernel for
a multinomial family in a closed form, from which great im-
provements were obtained over the use of Gaussian or linear
kernels. In [16], Kondor et al. proposed the use of a discrete
diffusion kernel for categorical data, and showed that the
simple diffusion kernel on the hypercube can result in good
performance for such data. Belkin et al. employed a heat
kernel to construct the weight of a neighborhood graph, and
apply it to a nonlinear dimensionality reduction algorithm
in [5]. In [28], Yang et al. proposed a ranking algorithm
known as the DiffusionRank using heat diffusion process;
simulations showed that it is very robust to Web spamming.

In this paper, we model diffusion of innovations as pro-
cesses of heat diffusion. Actually, the process of people in-
fluencing others is very similar to the heat diffusion phe-
nomenon. In a social network, the innovators and early
adopters of a product or innovation act as heat sources, and



—+—Heat Curve of Node 1
——Heat Curve of Node 2
——Heat Curve of Nodes 3, 4, 5

o—N——6—o
oo
ooy N
oy
ooy

A
S
P

05
/7’7

01 02 03 o4 06 07 08 03 1

TiDrr5|e
(b) Curve of heat change with
time in a small undirected so-
cial network

(a) A small undirected so-
cial network

Figure 1: A Simple Example

have a very high amount of heat. These peoples start to
influence others, and diffuse their influence to the early ma-
jority, then the late majority. Finally, at a certain time
point, heat is diffused to the margin of this social network,
and the laggards adopt this product or innovation.

The heat flows throughout a geometric manifold with ini-
tial conditions can be described by the following second or-
der differential equation:

{ @D Af(x,t) =0,
f(z,0) = fo(z),

where f(z,t) is the temperature at location z at time t,
beginning with an initial distribution fo(z) at time zero, and
Af is the Laplace-Beltrami operator on a function f [17].

In the light of the several successful existing applications
of the heat kernel, it is natural to investigate the heat equa-
tion whose special solution is the heat kernel K;(x,y). The
heat kernel Ky(z,y) describes the heat distribution at time
t diffusing from the initial unit heat source at position y,
and thus describes the connectivity (which is considered as
a kind of similarity) between z and y. However, it is very dif-
ficult to represent the social network as a regular geometry
with a known dimension. This motivates us to investigate
the heat flow on a graph. The graph is considered as an
approximation to the underlying manifold, and so the heat
flow on the graph is considered as an approximation to the
heat flow on the manifold.

In this paper, we model a social network as a graph, and
each consumer or customer in the social network is defined
as a node on this graph. The relationships between peoples
are represented by edges that connect nodes. We propose
three different diffusion models to describe different social
networks: undirected social networks, directed social net-
works and directed social networks with prior knowledge of
their diffusion probabilities.

(1)

3.1 Diffusion on Undirected Social Networks

Consider an undirected social network graph G = (V, E),
where V is the vertex set, and V = {v1,v2,...,0,}. E =
{(vi,v;) | there is an edge from v; to v;} is the set of all
edges. The edge (vs,v;) is considered as a pipe that con-
nects nodes v; and v;. The value f;(t) describes the heat
at node v; at time ¢, beginning from an initial distribution
of heat given by f;(0) at time zero. f(¢) denotes the vector
consisting of f;(t).

We construct our model as follows. Suppose, at time ¢,
each node i receives an amount M (i, ,¢, At) heat from its
neighbor j during a period At. The heat M (3, j, t, At) should
be proportional to the time period At and the heat differ-
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ence f;(t) — fi(t). Moreover, the heat flows from node j
to node ¢ through the pipe that connects nodes ¢ and j.
Based on this consideration, we assume that M (i, j, ¢, At) =
a(f;(t) — fi(t))At, where « is the thermal conductivity-the
heat diffusion coefficient. As a result, the heat difference at
node ¢ between time t + At and time t will be equal to the
sum of the heat that it receives from all its neighbors. This
is formulated as:
EFVES IO
Ji(vj,v)€EE

(fi(t) = fi(®)),  (2)

At

where F is the set of edges. To find a closed form solution
to Eq. (2), we express it in a matrix form:

£t + At) — £()

0= o), (3)
where
1, (vi,v;) € E or (vj,v;) € E,
Hij = —d(vi)7 = j7 (4)
0, otherwise.

In the limit At — 0, this becomes

d
() = aH(1). (5)

Solving this differential equation, we have:

£(t) = > £(0), (6)

otH could

where d(v) denotes the degree of the node v, and e
be extended as:
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M =T+ tH + 5 H

+ (7)
The matrix e*™ is called the diffusion kernel in the sense
that the heat diffusion process continues infinitely many
times from the initial heat diffusion.

In order to interpret Eq. (6) and the heat diffusion pro-
cess more intuitively, we construct a small undirected social
network graph with only five consumers as showed in Fig-
ure 1(a).

Initially, at time zero, suppose node 1 is given 3 units of
heat, and node 2 is given 2 units of heat; then the vector
£(0) equals [3,2,0,0,0]T. The entries in matrix H are

1 1
-1 0
0 -1
0 0
0 0

—_
OO O+

1
0
0
0 -1

Without loss of generality, we set the thermal conductivity
a = 1, and vary time ¢t from 0 to 1 with a step of 0.05.
The curve for the amount of heat at each node with time
is shown in Figure 1(b). We can see that, as time passes,
the heat sources node 1 and node 2 will diffuse their heat to
nodes 3, 4, and 5. The heat of nodes 3, 4, and 5 will increase
respectively, and the trends of their heat curves are the same
since these three nodes are symmetric in this graph.

Now we can interpret this figure in the aspect of social net-
work marketing. Node 1 and node 2 are two consumers rep-
resenting innovators or early adopters, who influence their
direct neighbors in this social network, and to diffuse innova-
tions to others. Eventually, nodes 3, 4, and 5 are successfully
influenced by nodes 1 and 2 step by step as time elapses.



3.2 Diffusion on Directed Social Networks

The above heat diffusion model is designed for undirected
social networks, but in many situations, the social network
graphs are directed, especially in online recommender sys-
tems or knowledge sharing sites. Every user in knowledge
sharing sites always has a trust list. The users in the trust
list will influence this user deeply. These relationships are
directed since user a is in the trust list of user b, but user b
might not be in the trust list of user a. Based on this consid-
eration, we modify the heat diffusion model on an undirected
social network as follows.

On a directed graph G(V, E), in the pipe (v;,v;), heat
flows only from v; to v;. Suppose at time ¢, each node v;
receives RH = RH (i, j,t, At) amount of heat from v; during
a period of At. We have three assumptions: (1) RH should
be proportional to the time period At; (2) RH should be
proportional to the heat at node v;; and (3) RH is zero if
there is no link from v; to v;. As a result, v; will receive
Zj:(vj,ui)eE 0, fj (t) At amount of heat from all its neighbors
that points to it.

At the same time, node v; diffuses DH (i,t, At) amount
of heat to its subsequent nodes. We assume that: (1) The
heat DH (i,t, At) should be proportional to the time period
At; (2) The heat DH (3, t, At) should be proportional to the
heat at node v;; (3) Each node has the same ability to dif-
fuse heat; (4) The heat DH (i, t, At) should be uniformly dis-
tributed to its subsequent nodes. The real situation is more
complex than this, in view of the dynamic environment of
social networks, but we have to simplify these in order to
make our model concise. As a result, node v; will diffuse
afi(t)At/d; amount of heat to each of its subsequent nodes,
and each of its subsequent nodes should receive a.f;(¢t)At/d;
amount of heat, where d; is the outdegree of node i. There-
fore 0; = a/d;. In the case that the outdegree of node i
equals zero, we assume that this node will not diffuse heat
to others. To sum up, the heat difference at node v; between
time ¢t + At and ¢ will be equal to the sum of the heat that it
receives, deducted by what it diffuses. This is formulated as

> dl_fm)) L ®

Ji(vj,v)EE J

S+ AL) — fi(t
St A0 = £ :a(_nmm
where 7; is a flag to identify whether node ¢ has any out-
links, such that 7; = 0 if node i does not have any outlinks,
otherwise, 7, = 1. Similarly, solving it, we obtain

- ]N/dj7 (’l)j7’l)i)€E7
f(t) = 6a f(O)7 Hij = —Ti, = j, (9)
0, otherwise.

3.3 Diffusion on Directed Social Networks with
Prior Knowledge

In Section 3.2, we modeled heat diffusion on directed so-
cial networks in which each person will diffuse innovation
to all of his (her) directed neighbors with equal probability.
In the real case, due to limited time and enthusiasm, each
person will not diffuse innovation to everyone in his (her)
contact list. For example, if you find Gmail or Hotmail is
very useful, you probably will tell your best friends or some
of your friends who may need this service, but not all of
your friends. This consideration motivates us to propose
our third heat diffusion model on directed social networks
with prior knowledge of diffusion probabilities.
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Consider a directed graph G = {V, E, P}, where V is the
vertex set, and V = {v1,v2,...,v,}. P = {pi; | where p;;
is the probability that edge (v;,v;) exists}. E = {(vsi,v;) |
there is an edge from v; to v; and p;; > 0} is the set of
all edges. If we consider a more general case, we could also
include the parameter that describes each person’s person-
ality. Some individuals in the social network are very active
and willing to share everything they like or dislike to their
friends. On the other hand, some individuals are inactive
with regard to diffusing innovation to others. We employ w
to describe the personality factor of each person.

According to the above analysis and the analysis in Sec-
tion 3.2, the expected heat difference at node i between time
t + At and time t will be equal to the sum of the heat that
it receives from all its neighbors. This is formulated as

filt+ At = fi(t) _

At

TiWs WiPji ,

IO SRR SR ) RE
k:(vi,vg)EE ji(vj,v)EE

where 7; is a flag to identify whether node ¢ has any outlinks.
The parameters diffusion probability p and personality fac-
tor w can be any value in the range [0,1]. Solving it, we
obtain f(t) = e*"™£(0), where

w;pji/d;, (vj,vi) € B,
Hij =< —(mwi/ds) Zk;(i,k)eEpikv t=1J (11)
0, otherwise.

3.4 Discussion on «

Parameter o plays an important role in the innovation
diffusion process. « is the thermal conductivity, i.e., the
heat diffusion coefficient. If it has a high value, heat will
diffuse very quickly. Otherwise, heat will diffuse slowly. In
the extreme case, if it is infinitely large, then heat will diffuse
from one node to other nodes immediately.

Different social networks have different values of a. In-
formation on hot online social network sites and blogs will
transfer information faster than other types of social net-
works. At the same time, different types of information also
have different values of a. For an example, bad news or neg-
ative information tends to transfer much faster than good
news or positive information in real-world social networks.

4. MARKETING CANDIDATES SELECTION

In most cases, each company has a certain quota of prod-
uct which is used for marketing candidates selection. These
products will be delivered to some pre-selected consumers
at a discount or totally free. Supposing we have data on
a social network which has N individuals, the problem we
need to solve is: given the quota number k, how to choose
the initial k “influential” individuals who will be delivered
a free sample product, in order to maximize the number of
cascade adoptions by which these individuals will influence
other individuals on their direct contact list.

In this paper, we model social network marketing using
heat diffusion processes. Initially, we choose k individuals
as the seeds for heat diffusion, denoted by a set Sk, and give
a certain amount of heat hg to each individual. At time zero
of the heat diffusion process, we set f;(0) = ho, where i €
Sk. As time elapses, the heat will diffuse through the whole
social network. If the amount of heat of individual 7 at time



t is greater than or equal to a threshold 6, this individual ¢
will be considered as having been successfully influenced by
others, and will adopt the product. We define the influence
set of a set of k individuals Sk, denoted as Is, (t), to be the
expected number of individuals who will adopt the product
at time t. Now the above problem could be interpreted as:
finding the most influential k size set Sk to maximize the size
of set Is, (t) at time t, where Is, (t) = {¢ | fi(t) > 0,4 < N}.
This problem is NP-hard, as already proved in [13].

In this paper, three approximation algorithms are pro-
posed to target the initial k-individual set Sk. All latter
algorithms are more realistic than former algorithms, but
at the same time, are more computationally expensive than
former algorithms.

4.1 Top-k Algorithm

Given a social network composed of N individuals, Al-
gorithm 1 shows the steps in finding the top-k influential
individuals. The basic idea of this approximation algorithm
is: first calculate the influence set of each individual, and
then find the k£ most influential individuals.

Algorithm 1: Top-k£ Algorithm

Input: Graph of a social network; Parameter 6
Output: Top-k influential individuals
foreach Individual i do
£(0) = 0; £i(0) = ho;
Execute the heat diffusion process f(t) = e**Hf(0);
foreach Individual j do
if f;(t) > 0 then
| Add Individual j into set I;(t)
end
end
end
Sort {I1(t), I2(t),...,In(t)} by the set size;
Output top-k individuals;

HO®©OWNO0OouhAWNH
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4.2 Kk-Step Greedy Algorithm

Algorithm 1 is very naive since it ignores the potential
overlaps of top-k influential sets. We therefore propose a
greedy algorithm to minimize the overlaps between top-k
influential sets, as follows: (1) First calculate the influence
set of each individual, and set U = {I,(¢), I2(t),...,In(t)};
(2) set R = (), each time choose the set I;(t), i < N to
maximize the size of {I;(t) — RN I;(t)}, then R = RU I;(¢),
U = U —1I;(t), until k sets are selected out. The detail of this
greedy approximation algorithm is described in Algorithm 2.

Algorithm 2: k-Step Greedy Algorithm

Input: Graph of a social network; Parameter 6
Output: k individuals

1 foreach Individual ¢ do
2 | £(0) = 0; £i(0) = ho;
3 Execute the heat diffusion process f(t) = e**Hf(0);
4 foreach Individual j do
5 if f;(t) > 6 then
6 | Add Individual j into set I;(t)
7 end
8 end
9 end
10 U= {L(t), I2(t),..., IN(t)}; R=0;

11 for =1 to k do

12 Select Iy, (t) which maximizes {I;m(t) — RN I (¢)} ;
13 R=RUILn(t); U=U— In(t);

14 Output Individual m;

15 end
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In each step of the greedy implementation, we wish to
find the influence set I;(¢) which provides the maximum
improvement in terms of the product adopters. If we let
R* (k) denote an optimal solution, using this k-step greedy
approximation algorithm, we will show that this algorithm
isa(l— %)-approximation algorithm, where e is the base of

natural logarithm, and
1\
>1—(1-= .

THEOREM 4.1. Algorithm 2 is a (1 — %)-approm‘mation
algorithm, and R(k) > (1 — (1 — 2)*)R*(k).

R(k)
R+ (k)

(12)

PROOF. At least R*(k) — R(k—1) individuals not covered
by R(k—1) are covered by the k subsets of R*(k). Hence, by
the pigeonhole principle, one of the k subsets in the optimal
solution must cover at least w of these individ-
uals. Let r; denote the subset or influence set selected by
the greedy algorithm at step [. From the above analysis, we
have R(1) =r1 > w Thus,

R(k) = R(k — 1) —+ ri
> R(k—1)+ Rk) - R(k 1) _kR(k —b
k—2 y
= a-prro+ - p
=0

(13)

(1- 5% — (1 -1), Algorithm 2

k e
provides a (1 — 2)-approximate solution. [

Since as k — oo, (1 —

As increases k, the accuracy of this greedy algorithm will
keep decreasing, but the result will converge to (1 — %) op-
timal solution.

4.3 Enhanced k-Step Greedy Algorithm

Although the k-step greedy algorithm above can often
generate a very good approximate solution to the problem
of marketing candidates selection, it still can not interpret
the real-world social network activities very well.

In Algorithm 2, we first compute the influence set of each
individual in turn, then choose the k sets with maximum
coverage. In reality, at the beginning of the innovation dif-
fusion process, several diffusion sources (innovators or early
adopters) in the network diffuse the innovation at the same
time, not just one single source. The information one person
receives from his (her) social network may come from sev-
eral diffusion sources. We therefore propose Algorithm 3, an
enhanced k-step greedy algorithm, to make our model more
realistic, although it is more computationally intensive than
the above two algorithms.

In Algorithm 3, before the [-th step starts, we first set
marketing candidates who are already selected out in the
(I—1)-th step as the diffusion sources (or heat sources), then
launch the greedy search algorithm to find the I-th marketing
candidate. This algorithm best preserves the social network
properties among all three algorithms, but increases the al-
gorithm time complexity, which we will analyze in Section 5.



Algorithm 3: Enhanced k-Step Greedy Algorithm

Input: Graph of a social network; Parameter 0
Output: k individuals

1 U:{Il(t)712(t)7"~711\7(t)};

2 A=0; R =0

3 for =1 to k do

4| L) =D =... = In(t) =0

5 HeatDiffusion(A);

6 Select I, () which maximizes {I;m(t) — RN I (¢)} ;
7 R=RUIyu(t); U=U — Im(t);

8 Add Individual m into set A;

9 end

Function HeatDiffusion(Set A)

1 foreach Individual i not in set A do
2 f(0) = 0;
3 foreach Individual p in set A do
a | | £(0) = ho;
5 end
6 fi (0) = ho;
7 Execute the heat diffusion process f(t) = e**Hf(0);
8 foreach Individual j do
9 if f;(t) > 0 then
10 | Add Individual j into set I;(t)
11 end
12 end
13 end

A common property of social networks is that cliques
form, representing circles of friends or acquaintances in which
every member knows every other member [1]. This inherent
tendency to cluster is quantified by the clustering coefficient
in [27]. Our two greedy algorithms also capture this prop-
erty by maximizing the improvement of coverage at each
step, and finally tend to select out the most influential nodes
in each community (cluster) as the marketing candidates.

5. COMPLEXITY ANALYSIS

A typical social network always consists of tens of thou-
sands of individuals, and some very large social networks
even could reach several millions of individuals. In this sec-
tion, we will analyze the complexity of our proposed meth-
ods, and introduce some very efficient techniques to reduce
the complexity, and to ensure our algorithm is scalable for
very large social networks.

5.1 Complexity of Heat Diffusion Process

When the graph of a social network is very large, a direct
computation of e*™* is very time-consuming. We adopt its
discrete approximation to compute the heat diffusion equa-
tion:

at r

f(t) = <I + FH) 1(0), (14)
where P is a positive integer. In order to reduce the compu-
tational complexity, we introduce two techniques: (1) since
£(0) is a vector, we iteratively calculate (I+ %H)"f(0) by
applying the operator (I+ % H) to £(0); (2) for matrix H, we
employ a data structure which only stores the information
of non-zero entries, since it is a very sparse matrix. Thus,
supposing a social network is connected by M edges (rela-
tionships between individuals), the complexity of executing
the heat diffusion process is O(PM ), which means the num-
ber of iterations P multiplied by the number of edges M in a
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Figure 2: Degree Distributions of Epinions

social network. In most cases, P = 30 is enough for approxi-
mating the heat diffusion equation. The complexity O(PM)
shows that our heat diffusion algorithm has very good per-
formance in scalability since it is linear with respect to the
number of edges in social networks.

5.2 Complexity of Approximation Algorithm

‘We now consider the three approximation algorithms de-
scribed in Section 4. Supposing a social network is composed
of N individuals and M edges, the complexity for each al-
gorithm is: (1) for Algorithm 1, if the sorting part needs
time complexity N log IV, the time complexity is O(N(PM+
N + Nlog N)); (2) for Algorithm 2, if the average size of in-
fluence set of each individual is d, the time complexity is
O(N(PM + M + kdN)); (3) for Algorithm 3, the time com-
plexity is O(kN(PM + N +d)). We could see that in terms
of time complexity, which is the same ranking as for the
models’ reality, reasonableness and accuracy, Algorithm 3
> Algorithm 2 > Algorithm 1. We will show the detailed
comparisons in Section 6.

We can employ some techniques to reduce the computa-
tion time. In all three algorithms, for each individual, we
execute the heat diffusion process, and calculate the influ-
ence set. Actually, it is not necessary to compute this for
every individual, since the degrees of social networks fit with
power-law distribution [2, 3]. A very large number of indi-
viduals have very small numbers of neighbors each (outlinks
or inlinks). We could assume that selecting these individuals
as marketing candidates is not productive. This will greatly
decrease the computation time of the algorithms.

6. EMPIRICAL ANALYSIS

We conduct several experiments to measure the perfor-
mance of our proposed models and algorithms, but due to
the space limitation here, we present only the experimen-
tal results of the three marketing candidates selection algo-
rithms on the directed social network. For the undirected
social network and directed social network with prior knowl-
edge of diffusion probabilities, the results and trends are
similar to this. The experiments address the following ques-
tions: (1) What is the performance of our marketing candi-
dates selection algorithms? (2) How does influence diffuse
in the social network? (3) How should sequential marketing
actions be planned? and (4) How to defend against diffusion
of negative information? In the following, Section 6.2 to 6.5
answer these questions respectively.

6.1 Dataset

A tremendous amount of data has been produced on the
Internet every day over the past decade. Millions of people
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Figure 3: Performance of Three Marketing Candidates Selection Algorithms

influence each other implicitly or explicitly through online
social network services, such as MySpace, Facebook, Orkut,
etc. Asaresult, there are many online opportunities to mine
social networks for the purposes of viral marketing [20].

We choose Epinions® as the data source for our experi-
ments on social network marketing. Epinions.com is a well-
known knowledge sharing site and review site that was es-
tablished in 1999. In order to add reviews, users (contrib-
utors) need to register for free and begin submitting their
own personal opinions on products, companies or movies,
etc. These reviews will influence future customers when they
are deciding whether a product is worth buying or a movie
is worth watching. Every member of Epinions maintains a
“trust” list which presents a network of trust relationships
between users, and a “block (distrust)” list which presents a
network of distrust relationships. This network is called the
“web of trust”, and is used by Epinions to re-order the prod-
uct reviews such that a user first sees reviews by users that
they trust. Epinions is thus an ideal source for experiments
on social networks and viral marketing.

We construct the graph of the Epinions social network by
the following rules: (1) We consider only the “trust” rela-
tionship between members of Epinions. (2) If a member v
trusts another member w, we create a directed link from
node w to node v to interpret the trust relationship between
these two members. The intuition behind this consideration
is that if v trusts w, then w has a very high probability
to influence v by word-of-mouth. Thus, we need to scan
the trust list of every member in Epinions to build a social
network graph. The dataset we employed is one of the 25
product categories, “Kids & Family”, as it had the most re-
views per product (10.2 on average) and reviews per person
who submitted at least one review in the category (5.8, on

2http://www.epinions.com/.
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average). This social network is composed of 75,888 users
from Epinions, and 508,960 edges are created between these
users. The indegrees and outdegrees of this social network
fits with power-law distribution [2, 3] which has been found
in many social networks [26]. The degree distributions of
Epinions social network are shown in Figure 2(a) and 2(b).

6.2 Experiments on Marketing Candidates
Selection

We describe the simulations on evaluating our three mar-
keting candidates selection algorithms first. Asstated above,
all the experimental results presented here use the heat diffu-
sion model on a directed social network (Section 3.2). Three
parameters need to be specified before starting the candi-
dates selection algorithms. The first parameter is the initial
heat vector f(0), and this vector determines how much heat
the heat sources need. For the purpose to let heat sources
have enough heat to diffuse, we need to allocate a relatively
large heat value to heat sources. We choose % as the amount
of heat for each heat source, where NN is the number of con-
sumers in this Epinions dataset, and k is the number of
marketing candidates (heat sources). This consideration in-
dicates that the average amount of heat of every consumer
is 1. The second parameter is the thermal conductivity value
«, which controls the heat diffusion rate of our model. We
set a = 1 in all of our experiments. The third parameter is
the adoption threshold 6. If at time ¢, one consumer’s heat
value is greater or equal to 6, we consider this consumer to
adopt this product. Actually, in real life, consumers may
have different adoption threshold values, but in this paper,
in order to simplify the model, we set 8 = 0.6.

We employ the term “coverage”, which denotes how many
consumers adopt the products, to evaluate our three pro-
posed algorithms. Figure 3 shows the simulation results
at t = 0.10, ¢t = 0.15 and ¢t = 0.20 under the following



Table 1: IDs of Marketing Candidates Selected at ¢t = 0.10, t = 0.15 and t = 0.20

Steps 1 2 3 4 5 6 7 8 9 10
Top-k 18 143 737 790 136 | 1179 | 1719 118 4416 780
Greedy 18 143 737 790 27 136 1179 4415 | 1719 | 2239
L=0.10 Enhanced Greedy 18 143 737 790 27 136 1719 1179 | 4415 | 2239
’ Steps 11 12 13 14 15 16 17 18 19 20
Top-k 27 128 | 1516 34 40 791 1 28 1619 | 1621
Greedy 118 | 4416 | 1753 791 4969 | 1619 725 18955 | 125 763
Enhanced Greedy | 118 | 4416 | 1753 791 1619 | 4969 125 725 849 763
Steps 1 2 3 4 5 6 7 8 9 10
Top-k 18 143 737 790 1179 | 136 1719 118 4416 780
Greedy 18 143 737 790 27 136 1179 4415 | 1719 | 2239
=015 Enhanced Greedy 18 143 737 790 27 136 1719 4415 | 1179 | 2239
’ Steps 11 12 13 14 15 16 17 18 19 20
Top-k 27 128 791 1516 40 34 1 1619 | 1621 28
Greedy 118 | 1753 | 4416 791 763 | 4969 | 18955 | 17991 | 1619 776
Enhanced Greedy | 4416 | 1753 | 118 791 1619 | 1621 | 4969 763 1749 | 18955
Steps 1 2 3 4 5 6 7 8 9 10
Top-k 18 143 737 790 1179 | 136 1719 118 4416 27
Greedy 18 143 737 790 27 4415 | 2239 | 12642 | 136 1719
=020 Enhanced Greedy 18 143 737 790 136 27 4415 2239 | 1753 | 1719
’ Steps 11 12 13 14 15 16 17 18 19 20
Top-k 780 791 128 1516 40 1619 28 1 1621 34
Greedy 1179 | 1753 | 791 | 22381 | 763 | 4969 118 18955 | 5313 776
Enhanced Greedy | 1179 [ 791 | 4416 | 1621 | 1619 | 4969 118 4282 | 1749 | 5144

scenario: if we are given 1 to 20 product samples (k =
20), who we should choose as the marketing candidates and
what is the performance (measured by the value of cover-
age) if we choose these candidates. Figure 3(a) and Fig-
ure 3(d) show the simulation results at time ¢ = 0.10. The
star, down triangle and diamond in solid line represent the
Top-k algorithm, k-step Greedy algorithm and Enhanced k-
step Greedy algorithm, respectively. In Figure 3(a), 3(b)
and 3(c), the x-axes denote the number of marketing candi-
dates we are given, and the y-axes present the resulting cov-
erage. We can easily draw the conclusion from these results
that the Enhanced k-step Greedy algorithms has the best
performance among the three algorithms. Figure 3(d), 3(e)
and 3(f) show the increase of coverage of each selection step
compared with the previous selection step. Since the Top-k
algorithm does not consider the overlap between each in-
fluence set, we can observe that its curve fluctuates sharply.
This indicates that the Top-k algorithm is a very naive algo-
rithm and it does not performs well in practice. Generally,
the curves of k-step Greedy algorithm and Enhanced k-step
Greedy algorithm are much smoother than that of the Top-
k algorithm; also the Enhanced k-step Greedy algorithm
causes more consumers to adopt products than the k-step
Greedy algorithm.

We also list the IDs of corresponding consumers who are
selected as the marketing candidates by our algorithms in
Table 1. The ID numbers range from 0 to 75,887 since we
have 75,888 users in Epinions social network totally. We ob-
serve that the first four selected candidates (IDs are 18, 143,
737 and 790) are the same for all of these algorithms. This
phenomenon matches the real life situation that a social net-
work is a network composed of several different communities
or clusters, and every community has some very influential
persons. These four persons are very likely to be belong
to four different communities and fulfil important roles in
these communities, like the authoritative entities in a social
network which can be identified by the HITS algorithm [14,
15]. Beyond the first four marketing candidates, however,
the remaining candidates chosen by each of our three algo-
rithms are different. The above analysis indicates that our

240

proposed framework can best represent the clustering coef-
ficient property of real-world social networks.

6.3 Diffusion of Influence

In the preceding section, we select 20 marketing candi-
dates out of 75,888 consumers using each of our three selec-
tion algorithms. These 20 consumers will be treated as the
diffusion sources, and start to influence others through word-
of-mouth process. More and more consumers will adopt this
product. Due to the large number of consumers, it is im-
practical to list here all the detailed data on how influence
diffuses in this social network. Hence, in this section, we
illustrate this process in a simple, clear and visual way.

First we plot out the Epinions social network graph. Every
relationship in this social network is represented by a gray
line. At time t = 0, we color the 20 marketing candidates
which are selected by Enhanced k-step Greedy algorithm in
dark red using RGB value. When the time reaches ¢t = 0.2,
as Figure 4(a) shows, more and more consumers are influ-
enced by their neighbors(consumers colored dark red have
higher probabilities to adopt this product than consumers
colored light red; the degree of darkness is computed using
our heat diffusion models). In Figure 4(b), when ¢ = 0.5,
we observe that more consumers tend to adopt this prod-
uct than when t = 0.2. This phenomenon coincides with
the intuition that the number of adopters will grow rapidly
through a word-of-mouth process in real-world.

6.4 Sequential Marketing Actions

So far, our algorithms plan the marketing strategies only
once; actually most companies hope to plan a marketing
strategy step by step to satisfy the market demand. Sup-
pose we have k samples for marketing a product, and we
wish to deliver a quota ko, k1,...,kn—1 of samples to pre-
selected candidates at specific time point to,t1,...,tn—1,
where ko + k1 + ... + kn_1 k. The problem is how to
design the marketing strategy and how to choose the mar-
keting candidates to maximize the adoptions of this product.

Since our diffusion models have the advantage of being
time-dependent, we can easily design marketing strategies
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Figure 4: Graph Demo on Diffusion of Influence

at different time points. Suppose at time to = 0, we de-
liver ko samples to ko consumers selected by our algorithms,
denoted by a set Cio, and from time to to time t1, several
other consumers adopt this product, denoted by a set Ao—11.
We could observe that a total of {U — (Cyo + Awo—¢1)} con-
sumers have not adopted this product at time ¢, where U
is the set of all consumers. We then start our next step
marketing action by selecting C}1 candidates from these
{U = (Cio + Ato—11)} consumers, and marketing products
to them. Thus, at time point t2, A;1—t2 consumers are suc-
cessfully influenced by others. We repeat this process until
all the actions are executed. In real life, n is often less than 3.

We have also conducted several experiments to simulate
the sequential marketing actions at different time points; we
omit the details here due to space limitations. In general,
we observe that the above heuristic algorithm ensures that
our marketing strategies cover the greatest number and most
diverse possible range of consumers.

6.5 Diffusion of Negative Information

Social networks are very dynamic and complex networks.
All kinds of information flows on social networks; we can
simply classify this information as positive and negative.
The presence of negative information makes modeling social
network marketing extremely difficult; no previous models
have considered negative information. Although in [11], a
propagation model of trust and distrust is proposed, this
model tries only to answer the question of why people trust
and distrust others, and does not address the question of
how positive and negative comments diffuse.

Previous diffusion models all assume that people will al-
ways positively recommend a product to their friends if they
adopt it. Actually, in real life, one has a high probability
to tell one’s friends not to buy a product if he or she feels
that this product is not good enough after he or she used it.
Unfortunately, no previous work has taken account of this
serious problem.

In this paper, our proposed diffusion models can naturally
simulate product adoptions in the presence of both positive
and negative comments. At the beginning of the marketing
candidates selection algorithms, based on some prior knowl-
edge, if we find a consumer u does not like the product that
will be marketed to him(her), this consumer will be allocated
a negative value of heat f,(0) by our algorithms. Thus, this
consumer will diffuse negative comments to his (her) friends
or neighbors in his (her) social network. At time point ¢,
a consumer v in this social network will receive different
types of comments from their neighbors. Some are positive
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and others are negative. Consumer v will decide whether to
adopt this product or not depending on the heat diffusion
equation f(t) = e**™f(0). If £, (t) > 0, consumer v will adopt
this product, and if f,(¢) < 6, consumer v will not adopt this
product. Another possibility is f,(¢) < 0, which means con-
sumer v is persuaded by the negative comments, and will
diffuse negative comments to his (her) neighbors too.

How can the influence of negative comments be mini-
mized? We utilize a heuristic algorithm to try to allevi-
ate the impact of negative comments as much as possible.
Before describing this algorithm, we make the following as-
sumptions: (1) Determining whether a consumer likes or
dislikes a specific product needs some prior knowledge on
this consumer’s previous profiles, such as purchase record,
reviews and feedback. Due to the lack of such data, we pre-
assign some consumers to diffuse negative comments. (2) In
order to simplify the model, we assume that only the first
selected marketing candidates could diffuse negative com-
ments, which means, at time ¢, if a consumer adopts this
product, in the remaining time, this consumer will only dif-
fuse positive comments to others.

Now the heuristic defense algorithm on how to choose
marketing candidates to defend against negative informa-
tion can be described as follows: (1) First select k mar-
keting candidates using the k-step Greedy algorithm or the
Enhanced k-step Greedy algorithm, and suppose some of
these candidates dislike this product, and will be allocated
negative initial heat values. (2) For each candidate who dis-
likes the product, select an additional k, candidates who
have the most common influence sets with this candidate
as the complementary diffusion sources. These complemen-
tary candidates can alleviate the damage that the negative
comments cause, or even eliminate it.

Suppose we are given 10 product samples to market to
consumers, and we select 10 candidates based on the En-
hanced k-step Greedy algorithm. If no-one among these
candidates diffuses negative comments on this product, the
coverage curve or adoption curve is shown in Figure 5 as
the star curve in a solid line. If the first candidate dislikes
this product, he(she) will diffuse negative information to his
(her) friends. Since the first candidate is the most influ-
ential node in this social network, the adoption curve will
drop substantially, as shown in the down triangle curve in
Figure 5. We then execute the defense algorithm described
above, and suppose k, = 2, which means we select two de-
fense candidates to alleviate the negative impact as much as
possible. From the diamond curve in Figure 5, we see that
this defense algorithm works well and alleviates the damage
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caused by the negative comments. The reason why the di-
amond curve will drop a little at the beginning is that the
two defense candidates are employed to alleviate the dam-
age from the first candidate; however, eventually, they will
increase the number of product adoptions. Since the social
network is really a very complicated network, we have il-
lustrated only a simple example of how to defend against
negative information in this paper. A more detailed and ex-
tensive analysis of diffusion of negative information will be
included in the future work.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a social network marketing frame-
work which includes three diffusion models and three mar-
keting candidates selection algorithms. The purpose of our
work is to model social network marketing as realistically
as possible. QOur proposed methods have several advan-
tages compared with previous work, including how to de-
fend against diffusion of negative information, which has not

3 4 5 6 7 8
Number of Marketing Candidates

been explored previously.
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promise of our proposed framework.

Although we have developed some models and algorithms
for social network marketing, several remaining issues need
to be studied in the future. We coin the concept of “nega-
tive information diffusion” in this paper, and introduce how
to defend against this kind of information by employing a
simple heuristic algorithm. The understanding of how nega-
tive information is diffused is still at a crude level, and more
theoretical analysis will be conducted in the future.

As we mentioned in this paper, a social network is a very
complicated network, and that is why we always try to model
social network marketing as accurately as possible within a
simple model. An important property of any social network
is evolution. Every social network is evolving all the time.
So far, our work considers social network as a static network
only, and ignores newcomers, new relationships between ex-
isting members and the growth of the network’s size.
the future, we plan to consider the evolution property of
social networks, and permit our social network to grow at
a certain rate. The power-law distribution property of so-
cial networks and some link prediction algorithms may be

helpful in modeling dynamic social networks.
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